锂电池极片湿涂层干燥基本过程
来源: | 作者:pmo55805a | 发布时间: 2018-08-20 | 1113 次浏览 | 分享到:
锂电池电极是一种颗粒组成的涂层,电极制备过程中,均匀的湿浆料涂敷在金属集流体上,然后通过干燥去除湿涂层中的溶剂。锂离子电池极片的干燥过程和涂布过程各自独立,又相互联系;涂层的性质,影响到干燥工艺的设计和操作;涂布速度、涂层的厚度决定干燥长度;干燥过程中涂层有流平过程,影响涂层的均匀性。因此,涂布在设计过程中能否准确地运用最佳的涂布、干燥工艺,平衡两者的关系,最终影响到涂布的综合技术性能。
极片干燥方式

(1)远红外辐射干燥。用远红外发射元件将热能辐射到干燥物体表面,使液体蒸发汽化进行干燥。
(2)双面送风飘浮干燥。漂浮干燥是在干燥箔材双面设置特殊设计的风嘴,送高速喷射的气流,在空气流动附壁效应的作用下,垂直作用到干燥箔材上,在气流的作用下,干燥片材呈漂浮状态进行干燥。
(3)常规对流热风干燥。对流干燥是比较传统的干燥技术。加热的干燥空气送入烘道,干燥空气中的热能通过空气的对流传导到被干燥物体,使液体蒸发汽化进行干燥。
(4)循环热风冲击干燥。利用空气喷射流体力学原理发展起来的高效干燥技术。干燥空气通过特殊设计的风嘴,以高速喷射到被干燥物体表面,在干燥物体表面阻碍干燥静止空气层在冲击作用下被破坏,从而加快了干燥过程,使干燥效率大大提高。
(5)过热水蒸气干燥。过热蒸气是将液体加热到使其全部蒸发的饱和蒸气后,再继续加热而获得的蒸气。
(6)微波干燥。微波干燥是利用频率为915-2450MHZ的微波能量使物料发热升温,从而蒸发水分进行干燥的方法。

物料中的水分分类
图1 物料的水分分类
物料的总水分、平衡水分、自由水分、结合水分、非结合水分之间的关系见图1。

干燥的基本原理

干燥:用加热的方法使水分或其它溶剂汽化,并将产生的蒸气排除,藉此来除去固体物料中湿分的操作。


                                                   图2 干燥过程示意图


如图2所示,水分在物料表面气化,在表面附近存在一层气膜,在气膜内水蒸气分压等于物料中水分的蒸气压,水分在气相中的传质驱动力为此气膜蒸气压与气相主体中水蒸气分压之差。同时,热空气对物料加热升温,将热量传递给湿物料,驱动力是热空气与物料的温度梯度;对对流干燥,由于介质的不断流动,带走气化的水分,从而形成分压差。

干燥的动力学过程
干燥曲线:干燥过程中物料含水量x与干燥时间t、物料表面温度T 的关系曲线,如图3所示。


                                                            图3 干燥曲线


干燥速率曲线:物料干燥速率u与物料含水量X的关系曲线,如图4。

                                                                  图4 干燥速率曲线

水分的内部扩散和表面汽化是同时进行的,但在干燥过程的不同阶段其速率不同,从而控制干燥速率的机理也不相同。干燥过程分为预热升温段AB、恒速干燥段BC和降速干燥段CDE。


(1)预热升温段AB:物料被加热升温


(2)恒速干燥阶段BC:被干燥物料表面始终保持着湿润水分进行蒸发,蒸汽中的热量被物料吸收,这些热量全部用来蒸发物料表面的水分,物料表面水分的蒸发速度与物料内部水分的扩散速度几乎相等,此时干燥速率保持稳定,呈现恒速干燥状态。


(3)第一降速阶段(CD段):物料内部水分扩散速率小于表面水分在湿球温度下的汽化速率,这时物料表面不能维持全面湿润而形成“干区”,导致干燥速率下降。


(4)第二降速阶段(DE段):水分的汽化面逐渐向物料内部移动,从而使热、质传递途径加长,阻力增大,造成干燥速率下降





乐橙官网 乐橙官网|导航访问 乐橙官网|导航访问 乐橙官网 乐橙官网|导航访问 乐橙官网|导航访问 乐橙官网|导航访问 乐橙官网|导航访问 乐橙官网|导航访问 乐橙网址|导航访问